• ( 2 ) (a/b)x - 1 = (b/a)x - 3, then the value ofx is:

    • 1) 1/2
    • 2) 1
    • 3) 2
    • 4) 3 1/2
    • Discussion in forum
      Answer : 3) 2
      Solution : (a/b)x - 1 = (b/a)x - 3
      => (a/b)x - 1 = (a/b)3 - x
      => x - 1 = 3 - x
      => 2x = 4
      => x=2








      discussion


      Answer : 3) 2

    • ( 3 ) Simplify : (8/125)- 4/3

    • 1) 625/16
    • 2) 512/16
    • 3) 256/8
    • 4) 625/8
    • Discussion in forum
      Answer : 1) 625/16
      Solution : (8/125)- 4/3
      => (125/8) 4/3
      => (5/2)3*(4/3)
      => (5/2) 4 = 625/16








      discussion


      Answer : 1) 625/16

    • ( 4 ) If 2x + 3z = 17 and 2x + z - 3z + 1 = 5, the value of x and z respectively are:

    • 1) 2,and 3
    • 2) 3 and 2
    • 3) 4 and 3
    • 4) 3 and 4
    • Discussion in forum
      Answer : 2) 3 and 2
      Solution : Given, 2x + 3z = 17 and 2x + z - 3z + 1 = 5
      => 22 2x - 3*3z = 5
      or A + B = 17 and 4A - 3B = 5, where A = 2x and B = 3z.
      On solving, we get : A = 8 and B = 9.
      A = 2x = 8 = 23
      B = 3z = 9 = 32.
      x = 3 and z = 2








      discussion


      Answer : 2) 3 and 2

    • ( 5 ) Simpify : (1024)-4/5

    • 1) 256
    • 2) 1/256
    • 3) 512
    • 4) 1/512
    • Discussion in forum
      Answer : 2) 1/256
      Solution : (1024)-4/5) = (1/1024)4/5 = (1/2)10*4/5 = (1/28) = 1/256.








      discussion


      Answer : 2) 1/256

    • ( 6 ) if ax = by = cz and b2 = ac then y equal to:

    • 1) xz/(x+z)
    • 2) xz/2(x-z)
    • 3) xz/2(z-x)
    • 4) 2xz/(x+z)
    • Discussion in forum
      Answer : 4) 2xz/(x+z)
      Solution : Let ax = by = cz = k.
      Then, a = k1/x, b = k1/y, c = k1/z
      given, b2 = ac
      => k2/y = k1/x . k1/z => k(1/x) + (1/z)
      2/y = (1/x) + (1/z) or 2/y = (x + z)/xz or y = 2xz/(x + z).








      discussion


      Answer : 4) 2xz/(x+z)

    • ( 7 ) Simplify : (256/576)1/4 * (64/27)-1/3 * (216/8)-1

    • 1) 1/(3√ 16)
    • 2) 1/(18√ 6)
    • 3) 1/(2√ 6)
    • 4) 1/(3√ 7)
    • Discussion in forum
      Answer : 2) 1/(18√ 6)
      Solution : (256/576)1/4 * (64/27)-1/3 * (216/8)-1
      => (256/576)1/4 * (27/64)1/3 * (8/216)1
      => (44/242)1/4 * (3/4)3*1/3 * (8/216)
      => (4/√ 24) * (3*8)/(4*216)
      => (4/2√ 6) * (1/36)
      => 1/18√ 6.








      discussion


      Answer : 2) 1/(18√ 6)

    • ( 8 ) (1/4ab2c)2 ÷ (3/2a2bc2)4

    • 1) (ac)2/81
    • 2) (ac)6/81
    • 3) (ac)4/81
    • 4) (ac)7/81
    • Discussion in forum
      Answer : 2) (ac)6/81
      Solution : (1/4ab2c)2 ÷ (3/2a2bc2)4
      => (1/16a2b4c2)*(24a8b4c8)/34
      => (1/16b2)*(16a6c6)/81
      => (ac)6/81








      discussion


      Answer : 2) (ac)6/81

    • ( 9 ) If √(2n) = 64, then the value of n is:

    • 1) 2
    • 2) 4
    • 3) 6
    • 4) 12
    • Discussion in forum
      Answer : 4) 12
      Solution : √(2n) = 64
      => (2n) = 642
      => (2n) = (26)2
      => 2n = 212
      => n = 12.








      discussion


      Answer : 4) 12

    • ( 10 ) simplify : (5x * 25x - 1) ÷ (5x- 1 * 25x - 1)

    • 1) 2
    • 2) 7
    • 3) 5
    • 4) 9
    • Discussion in forum
      Answer : 3) 5
      Solution : (5x * 25x - 1) ÷ (5x - 1 * 25x - 1)
      => (5x * (52)x - 1) ÷ (5x - 1 * (52)x - 1)
      => (5x * 52x - 2) ÷ (5x - 1 * 52x - 2)
      => (53x - 2) ÷ (53x - 3)
      => 53 - 2 = 5.








      discussion


      Answer : 3) 5





Top