#### CS

• Exam Pattern:

 Section Question No. No. of Questions Marks per Question Total Marks General Aptitude 1 to 5 5 1 5 Technical(CS) + Engineering Mathematics 1 to 25 25 1 25 26 to 55 30 2 60 Total Questions: 65 Total Marks : 100 Total Duration : 3 hours Technical Section : 70 marks General Aptitude : 15 marks Engineering Mathematics : 15 marks 25 marks to 40  marks will allotted to  Numeric Answer Type Questions

Multiple Choice Questions (MCQs):These questions are objective in nature and each question will have choice of four answers, out of which the candidate has to mark the correct answer. Each question carries 1 or 2 marks questions in all the sections.

Numerical Answer Questions:There will be no choices available for these types of questions. A Numeric Answer question carries 1 or 2 marks questions in all sections. The answer for these questions is a real number to be entered by using mouse and virtual keypad displayed on the monitor. No negative marking for these questions.

 Negative Marking Question Type Marks Negative  Marking Multi ple Choice Questions(MCQs) 1 mark 0.33 2 marks 0.66 Numerical Answer Questions 1 mark Nil 2 marks Nil

Syllabus:

Section1: Engineering Mathematics

Discrete Mathematics: Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Groups. Graphs: connectivity, matching, coloring. Combinatorics: counting, recurrence relations, generating functions.

Linear Algebra: Matrices, determinants, system of linear equations, eigenvalues and eigenvectors, LU decomposition.

Calculus: Limits, continuity and differentiability. Maxima and minima. Mean value theorem. Integration.

Probability: Random variables. Uniform, normal, exponential, poisson and binomial distributions. Mean, median, mode and standard deviation. Conditional probability and Bayes theorem.

Computer Science and Information Technology

Section 2: Digital Logic

Boolean algebra. Combinational and sequential circuits. Minimization. Number representations and computer arithmetic (fixed and floating point).

Section 3: Computer Organization and Architecture

Machine instructions and addressing modes. ALU, data‐path and control unit. Instruction pipelining. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode).

Section 4: Programming and Data Structures

Programming in C. Recursion. Arrays, stacks, queues, linked lists, trees, binary search trees, binary heaps, graphs.

Section 5: Algorithms

Searching, sorting, hashing. Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide‐and‐conquer. Graph search, minimum spanning trees, shortest paths.

Section 6: Theory of Computation

Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.

Section 7: Compiler Design

Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation.

Section 8: Operating System

Processes, threads, inter‐process communication, concurrency and synchronization. Deadlock. CPU scheduling. Memory management and virtual memory. File systems.

Section 9: Databases

ER‐model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. File organization, indexing (e.g., B and B+ trees). Transactions and concurrency control.

Section 10: Computer Networks

Concept of layering. LAN technologies (Ethernet). Flow and error control techniques, switching. IPv4/IPv6, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets, congestion control. Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of Wi-Fi. Network security: authentication, basics of public key and private key cryptography, digital signatures and certificates, firewalls.